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The lift force acting on a slender body of revolution that separates from a thin wing in
supersonic flow is analysed using Prandtl–Glauert linearized theory, scattering theory
and asymptotic methods. It is shown that this lift is associated with multi-scattering of
the wing-induced shock wave by the body surface. The local and global lift coefficients
are obtained in simple analytical forms. It is shown that the total lift is mainly induced
by the first scattering. Contributions from second, third and higher scatterings are
zero in the leading-order approximation. This greatly simplifies calculations of the
lift force. The theoretical solution for the flow field is compared with numerical
solutions of three-dimensional Euler equations and experimental data at free-stream
Mach number 2. There is agreement between the theory and the computations for
a wide range of shock-wave strength, demonstrating high elasticity of the leading-
order asymptotic approximation. Theoretical and experimental distributions of the
cross-sectional normal force coefficient agree satisfactorily, showing robustness of the
analytical solution. This solution can be applied to the moderate supersonic (Mach
numbers from 1.2 to 3) multi-body interaction problem for crosschecking with other
computational or engineering methods.

1. Introduction
Multi-body interaction applications include separation and carriage of various

stage vehicles for supersonic flights as well as crew escape. Common approaches to
predicting aerodynamic interactions are based on steady experiments using captive
trajectory simulation (CTS) and large-scale computational fluid dynamics (CFD). In
this connection, a variety of advanced numerical procedures have been developed
for predicting unsteady aerodynamic loads (Belk, Janus & Whitfield 1987; Thoms &
Jordan 1995; Prewitt, Belk & Maple 1999). Although these methods are useful in
engineering applications, they should be complemented by approaches based on
systematic approximation schemes that minimize empiricism, and are theoretically
based as well as physics-based, and are developed from first principles (Malmuth
2005). This will help to assess the role of parameters and provide important insight
into the flow physics. Namely, the models should describe various aerodynamic
processes including: shock–body interaction; interactions with shear layers and mixed
boundary; nonlinear effects of shock diffraction; non-uniformity of flow fields; and
unsteady effects. This could be achieved by identifying key unit problems and solving
them using a combined asymptotic and numerical approach (Malmuth 2005).
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Figure 1. Schematic of wavetrains induced by a two-dimensional wing (solid lines) and by
the PB nose (dashed lines).

Shalaev, Fedorov & Malmuth (2004) analysed effects of external flow non-
uniformity and shock reflections on separation of a slender parasite body (PB)
from a two-dimensional parent body (wing). This modelling, based on geometric
acoustics, shows that reflections of the wing-induced shocks by the PB surface may
significantly affect the lift force and pitching moment and lead to crucial changes of
the PB trajectory. These findings motivated the analysis herein that evaluates the lift
force associated with multi-scattering of a wing or planar body-induced shock by a
slender body of revolution. In the present analysis, the nearly planar body shock is
generated by a two-dimensional wing whose sharp leading edge is perpendicular to a
moderately supersonic free stream.

The problem is treated using classical electromagnetic and acoustic scattering theory
(Morse & Feshbach 1953; Bowman, Senior & Uslenghi 1969; Lependin 1978) as well
as asymptotic methods (Van Dyke 1964; Cole & Cook 1986). Although acoustical
and electromagnetic analyses such as those just cited are well known, their application
to supersonic shock-wave scattering problems has not received significant attention.

In § 2, the problem is formulated within the framework of Prandtl–Glauert linearized
supersonic theory. In § 3, analytical solutions are provided for the lift force induced
by multiple scattering of a wedge bow shock incident on a cylindrical afterbody of
a body of revolution whose axis of symmetry is aligned with the free-stream velocity
vector. In § 4, theoretical predictions of the lift force coefficient and flow features
are compared with numerical solutions obtained by integration of Euler equations.
Comparison with the experimental data of Gapcynski & Carlson (1957) is discussed
in § 5. The results are summarized in § 6.

2. Problem formulation
The physical problem is shown schematically in figure 1. A two-dimensional parent

body (called a ‘wing’) is indicated in the figure having a length l∗
w and maximum

thickness εl∗
w with ε � 1. Hereinafter, asterisks denote dimensional quantities. The

parasite body of revolution (PB) is of length l∗
PB and consists of a slender sharp nose

and a cylinder of radius a∗. It is assumed that the PB nose length is l∗
N = O(l∗

PB),
l∗
PB = O(l∗

w), and the thickness ratio is O(ε). In terms of the non-dimensional
coordinates (x, y, z) = (x∗, y∗, z∗)/l∗

PB , the PB length is lPB = 1 and a = a∗/l∗
PB = O(ε).

The PB axis is at a distance h∗ from the wing centreline y∗ =0. The PB nose is
located upstream from the interaction region; i.e. the nose-induced and wing-induced
pressure waves are scattered by the cylindrical afterbody.

For this configuration, the free stream is disturbed by the wing and by the parasite
body nose. The following cases are distinguished: Case 1. For h = O(a) � 1, multiple
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reflections of the disturbances from the PB and wing surfaces lead to a wavetrain
pattern. It is difficult to solve this problem analytically. Case 2. For a � h � 1,
a wavetrain still occurs. However, the problem can be analysed using asymptotic
methods with µ = a/2h treated as a small parameter. Case 3. For a � h = O(1), one
or few reflections of pressure waves may occur. Case 4. For 1 � h, only one scattering
occurs. Hereinafter, case 2 will be analysed in detail with the help of asymptotic
methods. Applications of this solution to cases 3 and 4 are straightforward.

Formally, the Prandtl–Glauert (PG) limit M∞ =fixed ε → 0 is considered, where
M∞ denotes the free-stream Mach number, which is greater than unity (typical cases
are 1.2 � M∞ � 3, ε ≈ 0.1). For this purpose, the non-dimensional flow potential
asymptotic expansion in the aforementioned PG limit is introduced as (see, for
example, Ashley & Landahl 1965; Loitsyansky 1970)

Φ(x, y, z; M∞, ε) ≡ Φ∗

U ∗
∞l∗

PB

= x + εφ(x, y, z; β) + O(ε2), β ≡
√

M2
∞ − 1 = O(1),

(2.1)

where φ is the perturbation potential.
For inviscid flow in the half space y > 0 (above the wing), φ is a solution of the PG

approximation of the three-dimensional Euler equations (Ashley & Landahl 1965;
Loitsyansky 1970), namely,

β2∂2
xφ −

(
∂2

yφ + ∂2
z φ

)
= 0, (2.2)

∂yφ(x, 0, z) = F ′(x), y = 0, (2.3)

∂nφ = 0, r = a, (2.4)

where F ′(x) ≡ dF/dx, ∂n is a derivative normal to the body surface. The boundary
conditions (2.3), (2.4) are formulated on the wing centreplane, y = 0, and the PB
surface, r = a, respectively.

In the framework of linearized supersonic theory, the wing-induced and body-
induced disturbances are treated independently. Because of three-dimensional relief,
the conical waves emanating from the body nose are much weaker than the wing-
induced plane waves. In the leading-order approximation, the perturbation potential
relevant to the nose-induced disturbance is expressed as (see, for example, Ashley &
Landahl 1965; Landau & Lifshitz 1986)

ϕ = 0, 0 < X < βr, (2.5a)

ϕ = − 1

2π

∫ X−βr

0

S ′(ξ ) dξ√
(X − ξ )2 − β2r2

, X > βr, (2.5b)

where r =
√

Y 2 + Z2 is the radial coordinate measured from the body axis,
S(X) = πa∗

n(X) is the non-dimensional cross-sectional area of the body nose, and
the coordinates X, Y are shown in figure 1. After reflection of these conical waves
from the wing surface, only a small portion of the original disturbance propagates
back to the parasite body. The first scattering of the PB-induced disturbance occurs
at a distance from the PB nose at least twice as long as for the wing-induced
disturbance (compare the wavetrain patterns shown in figure 1 by solid and dashed
lines). Equations (2.5) indicate that the nose-induced potential is ϕ = O(µ1/2ε2) for a
slender body of a =O(ε). Since this potential is much smaller than the wing-induced
potential εφ in the expansion (2.1), the PB nose-induced disturbances are neglected
in the following analysis.
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Figure 2. The wavetrain pattern between the wing plane y = 0 and the cylinder.

3. Analysis
Herein the problem (2.2)–(2.4) is applied to the cylindrical afterbody where the

body radius is a = const (see figure 2). We exploit the hyperbolic nature of the linear
equation (2.2) and restricted zones of dependence. The Mach wave lines (solid lines
in figure 2) have the angles γ = ± arcsin(1/M∞) and slopes dy/dx = ± β−1. The
zero line starts from the wing leading-edge centreline (x, y) = (0, 0) and represents
the wing-induced shock wave, the first line represents the Mach wavelet due to the
earliest reflection of the wing-induced disturbance by the cylinder, the second line
is the Mach wavelet due to the earliest reflection from the wing centreplane, etc.
In accord with this wavetrain pattern, the upper half-space y � 0 is divided into
the sequence of strips: xj−1 < x < xj , j =1, 2, . . . , where xj = β(h − a)j (see figure
2). Hereinafter, we will formulate unit problems for these strips and solve them
sequentially using the Laplace transform technique. The analysis will be focused on
the lift force acting on the parasite body. In particular, our objective is to obtain the
local, cL, and the integral, CL, lift coefficients defined as

cL(x∗) ≡ 2l∗
PB

ρ∗
∞
U ∗2

∞ πa∗2

dL∗

dx∗ , CL(x∗) ≡ 2L∗(x∗)

ρ∗
∞
U ∗2

∞ πa∗2
=

1

l∗
PB

∫ x∗

0

cL(x∗) dx∗, (3.1)

where L∗ is the lift force directed along the y-axis.

3.1. Solution in the region 0

In the region 0 <x <x1, the PB does not affect the flow in the leading-order
approximation. The perturbation potential is induced by the wing only and
governed by the problem (2.2)–(2.3). Taking the Laplace transform, φ̄(p; y, z) =∫ ∞

0
φ(x, y, z)e−px dx, we obtain

β2p2φ̄ −
(
∂2

y φ̄ + ∂2
z φ̄

)
= 0, (3.2)

∂yφ(p; 0, z) = pF̄ (p). (3.3)

The solution of this problem is well known as

φ̄0 = − F̄ (p)

β
e−βpy, y > 0. (3.4)
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Figure 3. Incident plane wave scattered by a cylinder.

The inverse Laplace transform gives the simple-wave solution

φ0(x, y, z) = − 1

2πiβ

∫ +i∞+c

−i∞+c

F̄ (p)ep(x−βy) dp = − 1

β
F (x − βy). (3.5)

With the substitutions p = iα and k =βα, this solution can be treated as a
superposition of plane acoustic waves emanating from the plane y = 0 into the
upper half-space

φ0(x, y, z) = − 1

2π

∫ +∞−ic

−∞−ic

β−1F̄ (iα)eiαx−iky dα. (3.6)

Since the wing-induced disturbances do not reach the cylinder surface in the region
0, the lift in this region is zero, c

(0)
L (x) = C

(0)
L (x) = 0.

3.2. Solution in the region 1

In the region x1 <x <x2, the wing-induced waves (3.6) are scattered by the cylinder
for the first time. Since the scattered waves do not reach the wing centreline in
the region 1, the wing can be ignored and a unit problem can be considered that
describes scattering of a plane wave of unit amplitude, eiαx−iky , by a cylinder into
infinite space (figure 3). Multiplication of this unit problem solution by the amplitude
−(2πβ)−1F̄ (iα) (see (3.6)) and integrating over the entire spectrum of the wing-induced
waves gives the perturbation potential and corresponding lift force associated with
the first scattering.

In the polar coordinate system (r, ϕ), the potential of incident plane wave is

φi = exp(iαx − ikY ) = exp(iαx − ikr cosϕ), (3.7)

where the coordinate Y is measured from the cylinder axis as shown in figure 3.
The full perturbation potential including the incident wave and scattered waves is
described by the classic solution (see, for example, Morse & Feshbach 1953; Lependin
1978)

φs = eiαx

∞∑
m=0

jmi−m

[
Jm(kr) − J ′

m(ka)

H
(2)′
m (ka)

H (2)
m (kr)

]
cos mϕ, (3.8)

jm =

{
1, m = 0,

2, m � 1,

where Jm are Bessel functions, H (2)
m are Hankel functions of the second kind,

which satisfy the radiation condition for kr → ∞. The corresponding pressure
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perturbation is

Ps = −∂xφs = P̄s(r, α)eiαx, (3.9)

P̄s(r, α) = −iα

∞∑
m=0

jmi−m

[
Jm(kr) − J ′

m(ka)

H
(2)′
m (ka)

H (2)
m (kr)

]
cosmϕ. (3.10)

On the cylinder surface, r = a, (3.10) is written as

P̄a ≡ P̄s(a, α) = −iα

∞∑
m=0

jmi−m

[
Jm(ka)H (2)′

m (ka) − J ′
m(ka)H (2)

m (ka)

H
(2)′
m (ka)

]
cosmϕ. (3.11)

The Wronskian Jm(z)H (2)′

m (z)−J ′
m(z)H (2)

m (z) = −2i/(πz) (Abramowitz & Stegun 1964)
leads to

P̄a = − 2

πka
α

∞∑
m=0

jmi−m cos mϕ

H
(2)′
m (ka)

. (3.12)

The component of lift-force coefficient induced by the elementary plane wave is
expressed in the compact analytical form

c̄
(1)
L (α) = − 2

πa

∫ 2π

0

P̄a cosϕ dϕ = − 8iα

πka2H
(2)′

1 (ka)
. (3.13)

Equation (3.6) indicates that the wing centreplane Y = −h radiates plane waves
of amplitude −(2πβ)−1εF̄ (iα)e−ikh. Multiplying the solution (3.13) by this factor and
integrating over the entire spectrum gives

c
(1)
L (x; h, a, β) =

ε

2π

∫ +∞−ic

−∞−ic

F̄ (iα)

β

8iα

πka2H
(2)′

1 (ka)
eiαx−ikh dα. (3.14)

This solution can be written in terms of the inverse Laplace transform L−1
p [f̄ (p)].

Introducing the Laplace variable p̄ = iβaα and the local coordinate x̄1 = (x−x1)/(βa),
yields

c
(1)
L (x̄1; β, a) =

8ε

π(aβ)3
L−1

p̄

[
iF̄ (p̄/βa)e−p̄

H
(2)′

1 (−ip̄)

]
. (3.15)

Note that c
(1)
L does not depend on the distance h, and it is valid for all cases given in

§ 2. If the parasite body has the variable radius a(x), (3.15) serves as a local solution
describing the lift due to shock-wave scattering in the local region (x − x1) = O(a).
This solution can be matched with the outer solution representing the disturbance
field far from the scattering region.

3.3. Solutions in regions 2, 3, etc.

In region 2, x2 <x <x3, disturbances induced by the first scattering spoil the boundary
condition on the plane y = 0. This occurs first at the point z =0, x2 = 2β(h − a) (see
figure 2). Upstream from this point, the wing does not feel the presence of the
parasite body. In order to compensate for perturbations induced by the PB on the
wing centreplane downstream from x2, the cylinder is imaged as shown in figure 2.

Imaginary disturbances emanating from the virtual cylinder represent waves
reflected by the wing in the domain x � x2. These waves are scattered by the PB
again in the region x � x3 (the second scattering). This process continues further and
leads to third, fourth, etc. scatterings. In contrast to the first scattering, there are
no exact analytical solutions describing higher scatterings. However, it is possible to
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Figure 4. Cylindrical waves emanating from the imaging cylinder into the sector
π − µ < ϕi < π + µ.

obtain asymptotic solutions for the case h 
 a in which µ = a/(2h) is treated as a
small parameter.

To treat the second scattering that occurs downstream from the point x3 = 3β(h−a),
it is necessary to determine the disturbance field associated with the first scattering.
Initially, consider the disturbance induced by the first scattering of an elementary
plane wave ∼eiαx−iky . Its potential is given by the second term of (3.8)

φs = −eiαx

∞∑
m=0

jmi−m J ′
m(ka)

H
(2)′
m (ka)

H (2)
m (kri) cos mϕi, (3.16)

where (ri, ϕi) are cylindrical coordinates related to the imaginary cylinder shown in
figure 4. The potential (3.16) represents cylindrical waves emanating from the virtual
cylinder. The actual cylinder sees only a small portion of these waves corresponding
to the narrow segment π − µ<ϕi < π + µ (see figure 4).

Herein, waves of ka = O(1) in the coordinate system (x, Y, z) anchored in the actual
cylinder are considered. For kh 
 1 and π − µ < ϕi < π + µ, the Hankel function is
approximated by the asymptotic expansion (Abramowitz & Stegun 1964)

H (2)
m =

√
1

πkh
exp(−ikY − 2ikh)im exp(iπ/4)[1 + O(1/kh)]. (3.17)

In the leading-order approximation, the disturbance (3.16) is a plane wave in the
near-field region over the actual cylinder. The potential of this wave is

φs = B(a, k, h)eiαx−ikY−2ikh, (3.18)

B(a, k, h) = −
√

1

πkh
eiπ/4

∞∑
m=0

i2mjm

J ′
m(ka)

H
(2)′
m (ka)

[
1 + O

(
1

2kh

)]
. (3.19)

Scattering of the plane wave is described by the unit problem discussed in § 3.2.
Using this similarity, the first-scattering solution (3.14) is adapted to treat the case of
the second scattering as

c
(2)
L (x; h, a, β) =

ε

2π

∫ +∞−ic

−∞−ic

B
F̄ (iα)

β

8iα

πka2H
(2)′

1 (ka)
eiαx−3ikh dα. (3.20)



312 A. V. Fedorov, N. D. Malmuth and V. G. Soudakov

Introducing the local variable x̄2 = (x − x3)/(βa) gives

c
(2)
L (x̄2; β, a) =

8ε

π(βa)3
L−1

p̄

[
B(p̄)

iF̄ (p̄/βa)e−3p̄

H
(2)′

1 (−ip̄)

]
, (3.21a)

B(p̄) = −

√
2µ

πp̄

∞∑
m=0

i2m+1jm

J ′
m(−ip̄)

H
(2)′
m (−ip̄)

[1 + O(µ)]. (3.21b)

The lift coefficient due to nth scattering is calculated in a similar way and expressed
as

c
(n)
L (x̄n, β, a) =

8ε

π(aβ)3
L−1

p̄

[
Bn−1 iF̄ (p̄/βα)

H
(2)′

1 (−ip̄)
e−(2n−1)p̄

]
, (3.22a)

x̄n = (x − x2n−1)/(βa). (3.22b)

Since the problem is linear, the streamwise distribution of the local lift coefficient
is a sum of the functions c

(n)
L (x̄n). This leads to the final form of asymptotic solution

cL(x; β) =
8ε

π(βa)3

∞∑
n=1

µ(n−1)/2D(n)(x̄n), (3.23a)

D(n)(x̄n) = L−1
p̄

[
An−1 iF̄ (p̄/βa)

H
(2)′

1 (−ip̄)
e−(2n−1)p̄

]
, (3.23b)

A = −

√
2

πp̄

∞∑
m=0

i2m+1jm

J ′
m(−ip̄)

H
(2)′
m (−ip̄)

[1 + O(µ)]. (3.23c)

Note that the second and higher terms of (3.23a), which represent the local
lift induced by the second and higher scatterings, are given in the leading-order
approximation with respect to µ.

4. Solution for a sharp wedge and comparison with numerical solutions
Since the non-dimensional body radius a =O(ε) is small, the function F̄ (p̄/βa) can

be approximated by its asymptotic expansion for large argument. For a wing with
sharp leading edge, this expansion reads

F̄ (p̄/βa) = a2β2/p̄2 + O((aβ/p̄)3). (4.1)

The leading-order term corresponds to the shape function F (x) = x representing
a sharp wedge that approximates the wing nose. This motivates us to consider the
sharp-wedge case in detail.

4.1. Distribution of local lift force

In the sharp-wedge case, the solution (3.23) is written as

cL(x; β) =
8ε

πaβ

∞∑
n=1

µ(n−1)/2G(n)(x̄n), (4.2a)

G(n)(x̄n) = L−1
p̄

[
An−1 e−(2n−1)p̄

p̄2H
(2)′

1 (−ip̄)

]
, (4.2b)

where the functions G(n)(x̄n) do not depend on parameters of the problem and can
be calculated once and for all. These calculations were performed using standard
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second (n=2) and third (n= 3) scatterings, here x̄n is denoted as xn.

routines of the Netlib library. Figure 5 shows the functions G(n)(x̄n), which can be
treated as normalized local lift-force coefficients, for first, second and third scatterings.
The maximum of G(1)(x̄1) is located at the point x̄1 ≈ 0.6 that is rather close to the
initial point x̄1 = 0, at which the leading-edge shock crosses the cylinder. The function
G(1)(x̄1) rapidly attenuates as x̄1 increases. This trend indicates that the lift due to
the first scattering is concentrated near the station x = βh. As the scattering number
n increases, the maximum of G(n)(x̄n) decreases which leads to faster convergence of
the asymptotic series (4.2a). Apparently the length of the scattering region increases
with n, and the local lift distribution becomes more oscillatory.

4.2. Total lift force

According to (3.1), the integral lift coefficient is expressed as

CL = 4ε

[ ∞∑
n=1

µ(n−1)/2 2

π

∫ x̄n

0

G(n)(x̄n) dx̄n

]
. (4.3)

Consider the integral

I (1)(x̄1) ≡ 2

π

∫ x̄1

0

G(1)(x̄1) dx̄1

associated with the first-scattering contribution. Using the relation

Lp

[∫ x

0

f (x ′) dx ′
]

= p−1f̄ (p)

and (4.2b) at n = 1, we obtain

I (1)(x̄1 → ∞) = lim
x̄1→∞

[
L−1

p̄ (p̄−1Ḡ(1)(p̄))
]
. (4.4)

Asymptotic behaviour of I (1) for large x̄1 is determined by the inverse Laplace
transform of p̄−1Ḡ(1)(p̄) for small |p̄|. The approximation of Hankel function
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(Abramowitz & Stegun 1964)

H
(2)′

1 = −i
2

πz2
+ · · · , z → 0, (4.5)

gives

p̄−1Ḡ(1)(p̄) =
ie−p̄

p̄3H
(2)′

1 (−ip̄)
= 1

2
πp̄−1 + · · · , p̄ → 0. (4.6)

Taking the inverse Laplace transform of (4.6) and substituting the result into (4.4),
we obtain I (1)(∞) = 1. Thus, the first scattering induces the total lift force, which is
concentrated near the station x =βh and expressed in simple form

C
(1)
L (∞) = 4ε. (4.7)

The lift force due to the second scattering is associated with the asymptotic
behaviour of the integral

I (2)(x̄2) ≡ 2

π

∫ x̄2

0

G(2)(x̄2) dx̄2,

which has the Laplace transform

Ī (2)(p̄) =
2

π

iAe−3p̄

p̄3H
(2)′

1 (−ip̄)
, (4.8)

where A is given by (3.23c). Using expansions of Bessel and Hankel functions for
small arguments (Abramowitz & Stegun 1964)

J ′
0(z) = − 1

2
z + O(z3), J ′

m(z) = m
(

1
2
z
)m−1

(
1

Γ (m + 1)
+ O(z2)

)
, m = 1, 2, K, (4.9)

H
(2)′

0 (z) = − 2i

πz
+ · · · , H (2)′

m (z) = − m

iπ

2mΓ (m)

zm+1
+ · · · , m = 1, 2, K, (4.10)

we obtain A = const × p̄3/2 as p̄ → 0. This gives Ī (2)(p̄) = const × p̄1/2 as p̄ → 0, and

I (2)(x̄2) =
const√

x̄2

→ 0, x̄2 → ∞. (4.11)

Thus, the total lift induced by the second scattering is C
(2)
L (∞) = 0. Performing

similar analysis for higher scatterings reveals that I (n) tends to zero with higher rates,
and the corresponding lift coefficient is C

(n)
L (∞) = 0.

We conclude that the total lift coefficient due to multiple scatterings of the wedge-
induced shock by a long cylinder is localized at the station x =βh + O(a) and is
equal to CL(∞) = 4ε. This lift is predominantly generated by the first scattering. The
second, third, etc. scatterings do not contribute to the lift force in the leading-order
approximation with respect to ε.

Figure 6 shows the integrals I (n)(x̄n) for n= 1, 2, 3. The lift force is concentrated in
the range x − x1 ∼ 10βa. Contributions from higher scatterings are shifted downstream
since x = βax̄n + (2n − 1)β(h − a), and are appreciable in the regions ∼15βa. This
indicates that a parasite body of finite length may experience the lift, which is
substantially different from CL(∞) = 4ε. Moreover, the result may be affected by
nonlinear interactions (when ε is not sufficiently small) and by multiple scatterings
between closely spaced bodies (when µ is not sufficiently small). This motivated us to
perform numerical experiments using a three-dimensional Euler solver and compare
numerical solutions with the theoretical one.
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Figure 6. Integrals I (n)(x̄n) at n= 1, 2, 3, here x̄n is denoted as xn.

4.3. Comparisons with numerical solutions

Numerical solutions have been obtained using an implicit finite-volume method. The
three-dimensional Euler equations were approximated by a conservative scheme.
The flux vector was evaluated by an upwind flux-difference splitting (Roe 1986).
The MUSCL algorithm is applied with the third-order TVD space discretization
(Chakravarthy & Osher 1985). An Euler implicit discretization in time of the governing
equations is combined with a Newton-type linearization of the fluxes to obtain the
system of algebraic equations (Weiss, Maruszewski & Smith 1997). This system was
solved using a point Gauss–Seidel scheme. The time marching proceeds until a
steady-state solution sets in.

The bottom boundary of the computational domain coincides with the wedge
surface of the angle α, ε = tan α. On this boundary and on the cylinder surface,
the no-penetration condition is imposed. On the upper and inflow boundaries,
dependent variables correspond to undisturbed free stream. On the outflow boundary,
extrapolation of dependent variables provides ‘soft’ conditions. The flow symmetry
conditions are imposed on the vertical plane passing through the cylinder axis. On
the side boundary, which is parallel to the symmetry plane, non-reflecting boundary
conditions are used. The computational domain has a length of lx = 35a, the distance
from the cylinder axis to the bottom boundary is 20a, and from the symmetry
plane z = 0 to the side boundary is 40a. The computational grid has a cylindrical
configuration with 150 cells in the x-direction, 110 cells in the radial direction and
120 cells in the azimuth direction (the total number of grid nodes is approximately
2 × 106).

The side view of pressure contours on the symmetry plane and on the cylinder
surface are shown (figure 7a) for the case M∞ = 2, h = 7a, α =2◦. The wedge-induced
shock wave is scattered by the cylinder, reflected by the wedge and scattered again;
i.e. the computational domain covers the first and second scatterings. Figure 7(b)
shows the front view to the cross-plane x =23a located slightly upstream from
the second-scattering region. The cylinder generates waves producing a complex
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(a)

(b)

Figure 7. Fragment of pressure contours on the symmetry plane and on the cylinder surface
(a) side view, h = 7a, α = 2◦, 0 � x � 35a, flow from left to right; (b) front view, h = 7a, α = 2◦,
x = 23a.

three-dimensional pressure field that gives a non-uniform pressure distribution on
the cylinder surface. Despite this complexity, the normalized local lift due to the
first scattering agrees well with the theoretical one (figure 8). Note that the initial
point x1 = β(h − a) predicted by the linear theory, is shifted downstream with respect
to the corresponding point of the numerical solution, because the nonlinear effect
leads to a slight increase of the wedge-induced shock angle. This discrepancy is easily
compensated for by using accurate analytical relations for the shock wave angle
including nonlinear terms.

In figure 9, comparison of the lift force coefficients due to the first scattering
indicates that the leading-order linear theory is quite robust. The discrepancy increases
slowly with the wedge angle and does not exceed 8% at α =8◦.

Figure 10 illustrates the pressure field for a relatively small distance h = 3a

associated with multiple scatterings. The corresponding distribution of the normalized
local lift coefficient G(x) = πaβcL(x)/8ε is shown in figure 11. The theoretical solution
(solid line), which includes contributions from the first three scatterings, is expressed
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Figure 8. Normalized local lift coefficient G(1)(x̄1) due to the first scattering; solid line,
theory; symbols, CFD solution for M∞ = 2, α = 2◦, h = 7a, here x̄1 is denoted as x1.
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Figure 9. The total lift coefficient CL(∞) due to first scattering as a function of the wedge
angle α = tan−1 ε; solid line, theory; symbols, CFD solution for M∞ = 2, h = 7a.

from (4.2a) as

G(x) =

3∑
n=1

µ(n−1)/2G(n)(x̄n). (4.12)

This solution is very close to the numerical one (symbols) despite of the not-so-small
value of µ = 1/6. Figure 12 shows the deviation of the total lift coefficient from the
theoretical one versus the normalized distance h/a. The relative discrepancy is about
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(a)

(b)

Figure 10. Fragment of pressure contours on the symmetry plane and on the cylinder surface
(a) side view, h = 3a, α = 2◦, 0 � x � 35a, flow from left to right; (b) front view, h = 3a, α = 2◦,
x = 13a.
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Figure 11. Normalized local lift coefficient G(x); solid line, theory accounting for three
scatterings; symbols, CFD solution for M∞ = 2, α = 2◦, h = 3a.
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Figure 12. Relative deviation of the total lift coefficient predicted by CFD from the
theoretical one versus the normalized distance h/a; M∞ = 2, α = 2◦, lx = 35a.
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Figure 13. Schematic layout of test set-up and models (scanned from figure 1 of
Gapcynski & Carlson 1957).

5% at h/a =3 and quickly decreases as h/a increases. This behaviour is consistent
with the theory indicating that the first scattering, which does not depend on h/a,
produces the dominant effect.

5. Comparison with experiment
For further validation of the theoretical results we use the experimental data

(Gapcynski & Carlson 1957) obtained in the Langley 4 × 4 ft2 supersonic wind tunnel.
The aerodynamic characteristics of a body of revolution were measured in the two-
dimensional flow field of a 25/3 % thick circular-arc wing of a rectangular plan
form. Data were obtained at M∞ = 2.01 and the free-stream unit Reynolds number
Re1∞ = 3.6 × 106 ft−1. The test set-up is shown schematically in figure 13. The blunt-
base parabolic body of revolution had the length l∗

PB = 12 in and the non-dimensional
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Figure 14. Comparison of theoretical (solid line) and experimental (symbols) distributions
of the normal force induced by the wing shock impinging on the body at x ≈ 0.4.

body radius a(X) = 0.2(X − 12
15

X2), X = a∗/l∗
PB. The wing has the chord length l∗

w = l∗
PB

and the arc radius R∗ = 36.25 in. The wing arc is approximated well by a parabola
y(x) = ε(x − x2) with 0 � x � 1 and ε =1/6.

The normal force distribution along the body axis is shown in figure 14 (symbols)
for the case of the wing leading-edge shock impinging on the body at x ≈ 0.4. In this
plot

cn

a

amax

=
1

ρ∗
∞U ∗2

∞ a∗
dL∗

dx∗
a

amax

, (5.1)

where cn is the cross-sectional normal force coefficient. Using the definition (3.1) we
obtain

cn

a

amax

=
πa

2
cL

a

amax

. (5.2)

In the case considered herein, there is only the first scattering and (3.23a, b) gives

cL =
8ε

π(aβ)3
D(1)(x̄1), D

(1)(x̄1) = L−1
p̄

[
iF̄ (p̄/βa)

H
(2)′

1 (−ip̄)
e−p̄

]
, (5.3)

where F̄ is Laplace transform of F (x) = x(1 − x), 0 � x � 1,

F̄ (p̄/βa) =
β2a2

p̄2

[
1 + e−p̄/βa − 2

βa

p̄

(
1 − e−p̄/βa

)]
. (5.4)

Since βa is small, the exponential terms in (5.4) are omitted and the local lift
coefficient is expressed as

cL =
8ε

πaβ
L−1

p̄

[
ie−p̄f (p̄/βa)

p̄2H
(2)′

1 (−ip̄)

]
, (5.5)

f (p̄/βa) = 1 − 2
βa

p̄
. (5.6)
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Substitution of (5.5) into (5.2) gives

cn

a

amax

=
4ε

β

a

amax

E(x̄), (5.7)

E(x̄) = L−1
p̄

[
ie−p̄f (p̄/βa)

p̄2H
(2)′

1 (−ip̄)

]
, x̄ = (x − xsh)/βa. (5.8)

Calculations were conducted using (5.6)–(5.8) with the parameters relevant to
experimental conditions: ε = 1/6 and βa ≈ 0.0948, where a(x) is calculated at
x = xsh = 0.4.

As shown in figure 14, the theoretical distribution of the cross-sectional normal
force coefficient (solid line) agrees well with the experimental data (symbols) in the
region 0.4 � x � 0.65. Further downstream, where the body radius varies significantly
and the body surface is poorly approximated by a cylinder, the theoretical curve
deviates from the experimental points. In general, the agreement is satisfactory, which
demonstrates robustness of the analytical solution.

6. Concluding remarks
The lift force associated with multi-scattering of the wing-induced shock wave by a

slender body of revolution was analysed using linearized supersonic theory, scattering
theory and asymptotic methods. The local and integral lift coefficients were obtained
in simple analytical forms convenient for quick calculations of aerodynamic loads.
These solutions can be applied to the moderate supersonic (Mach numbers from 1.2
to 3) multi-body interaction problem for crosschecking with other computational or
engineering methods.

The total lift coefficient, which is due to multiple scatterings of the wing leading-
edge shock by a long cylinder, is concentrated near the station x = βh, where the
shock crosses the body axis, and expressed in very simple form CL(∞) = 4ε. This
force is predominantly generated by the first scattering. The second, third and higher
scatterings do not contribute to the total lift in the leading-order approximation
with respect to small parameter µ = a/2h characterizing the distance between the
interacting bodies. On one hand, the analytical solution, which is inaccessible from
purely numerical methods, shows the excellent complementarity of the numerics
and the pen-and-paper methods. On the other, the numerics shows accessibility to
nonlinear effects not modelled by the linear theory.

The analytical solution agrees satisfactory with the experimental data obtained for
the blunt-base parabolic body of revolution in the flow field induced by a circular-arc
wing in the Mach =2 free stream, despite the facts that the body radius varies in the
interaction region and the wing thickness is not very small (ε = 1/6). This adds more
confidence to the practicability of the theoretical model.

The aforementioned conclusions are valid for bodies with slender sharp noses
satisfying the constraint µ1/2(a/lN )2 � ε. Otherwise, the lift force due to scattering of
the nose-induced disturbances should be taken into account. The solutions obtained
can be treated as near-field solutions, describing scattering of the far-field disturbances
in local regions of the order of body radius a. By matching the near-field and far-field
solutions it is feasible to derive a composite asymptotic solution valid for a sufficiently
broad class of configurations associated with the multi-body interaction problem. This
is the subject of further analysis.
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